Directed evolution of copper nitrite reductase to a chromogenic reductant.
نویسندگان
چکیده
Directed evolution methods were developed for Cu-containing nitrite reductase (NiR) from Alcaligenes faecalis S-6. The PCR cloning strategy allows for the efficient production of libraries of 100 000 clones by a modification of a megaprimer-based whole-plasmid synthesis reaction. The high-throughput screen includes colony lift onto a nylon membrane and subsequent lysis of NiR-expressing colonies in the presence of Cu(2+) ions for copper incorporation into intracellularly expressed NiR. Addition of a chromogenic substrate, 3, 3'-diaminobenzidine (DAB), results in deposition of red, insoluble color at the site of oxidation by functional NiR. Twenty-thousand random variants of NiR were screened for improved function with DAB as a reductant, and five variants were identified. These variants were shuffled and screened, yielding two double variants. An analog of the DAB substrate, o-dianisidine, which is oxidized to a water-soluble product was used for functional characterization. The double variant M150L/F312C was most proficient at o-dianisidine oxidation with dioxygen as the electron acceptor (5.5X wt), and the M150L single variant was most proficient at o-dianisidine oxidation with nitrite as the electron acceptor (8.5X wt). The library generation and screening method can be employed for evolving new reductase functions in NiR and for screening of efficient folding of engineered NiRs.
منابع مشابه
Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils.
One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/I...
متن کاملDevelopment and characterization of murine monoclonal antibodies specific for dissimilatoric copper nitrite reductase.
Several hybridoma cell lines from mice were established, producing monoclonal antibodies (MAbs) directed against the dissimilatoric copper nitrite reductase (dNIR) to detect actual denitrifying bacteria at the single cell level under nondestructive conditions in the environment. The mice were immunized with native or recombinant enzyme gained from two different bacteria, Ochrobactrum anthropi a...
متن کاملLight-dependent Assimilation of Nitrite by Isolated Pea Chloroplasts.
Chloroplasts were prepared from peas (Pisum sativum) in glucose-phosphate medium. In the presence of dl-glyceraldehyde, they catalyzed nitrite-dependent O(2) evolution (mean of 13 preparations, 17.5 mumole per mg chlorophyll per hour, sd 3.64). The optimum concentration of nitrite was 0.5 mm; 0.12 mm nitrite supported V(max)/2. The reaction was accompanied by the consumption of nitrite; 55 to 8...
متن کاملA eukaryotic copper-containing nitrite reductase derived from a NirK homolog gene of Aspergillus oryzae.
We cloned a bacterial copper-containing nitrite reductase (NirK) homolog gene of Aspergillus oryzae (AonirK). Alignment showed that amino acid residues crucial for copper binding are conserved in the deduced sequence of the fungal protein. The recombinant protein exhibited distinct nitrite reductase activity, and its absorption and EPR spectra showed the presence of type 1 and type 2 copper ato...
متن کاملCrystal structure of a NO-forming nitrite reductase mutant: an analog of a transition state in enzymatic reaction.
I257E was obtained by site directed mutagenesis of nitrite reductase from Achromobacter cycloclastes. The mutant has no enzyme activity. Its crystal structure determined at 1.65A resolution shows that the side-chain carboxyl group of the mutated residue, Glu257, coordinates with the type 2 copper in the mutant and blocks the contact between the type 2 copper and its solvent channel, indicating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2010